ADM-SDEV-BASE/XCKU060 User Manual Document Revision: 1.7 27th Apr 2021 # © 2021 Copyright Alpha Data Parallel Systems Ltd. All rights reserved. This publication is protected by Copyright Law, with all rights reserved. No part of this publication may be reproduced, in any shape or form, without prior written consent from Alpha Data Parallel Systems Ltd. Head Office LIS Office Address: Suite L4A, 160 Dundee Street, Edinburgh, EH11 1DQ, UK Telephone: +44 131 558 2600 Fax: +44 131 558 2700 email: sales@alpha-data.com http://www.alpha-data.com 611 Corporate Circle, Suite H Golden, CO 80401 (303) 954 8768 (866) 820 9956 - toll free sales@alpha-data.com http://www.alpha-data.com All trademarks are the property of their respective owners. # Table Of Contents | 1 | Introduction | - 1 | |------------|--|-----| | 1.1 | Key Feetures | | | 12 | References & Specifications | | | 1.3 | Environmental & Specifications | | | 2 | Installation | | | 21 | Software Installation | | | 22 | Hardware Installation | | | 221 | Handlina Instructions | | | 222 | Power Supply | | | 223 | Cooling Requirements | | | 224 | Configuration FMC Board | | | 3 | Functional Description | | | 3.1 | Overview | 4 | | 3.1.1 | Switch Definitions | 5 | | 3.1.2 | Status LED Definitions | 6 | | 3.1.3 | User LEDs - ADA-SDEV-KIT2 only | 7 | | 3.2 | JTAG Interface | 8 | | 3.2.1 | On-board Interface | 8 | | 3.2.2 | JTAG Voltages | 8 | | 3.3 | Clocks | | | 3.3.1 | Reference Clocks (REFCLK400M and FABRIC_CLK) | 10 | | 3.3.2 | Programmable Clocks (PROGCLK0 and PROGCLK1) | 10 | | 3.3.3 | Module to Carrier Global Clocks (CLK_M2C) | 10 | | 3.3.4 | Module to Carrier MGTREF Clocks (GBTCLK_M2C) | 11 | | 3.4 | Configuration | | | 3.4.1 | Configuration From ADM-SDEV-CFG1 or ADM-SDEV-CFG2 Flash Memory | | | 3.4.1.1 | Building and Programming Configuration Images | | | 3.4.2 | Configuration via JTAG | | | 3.5 | Health Monitoring | | | 3.5.1 | Automatic Temperature Monitoring | | | 3.5.2 | Microcontroller Status LEDs | | | 3.6 | FPGA | | | 3.6.1 | I/O Bank Voltages | | | 3.6.2 | Target MGT Links | | | 3.7 | Memory Interfaces | | | | FMC Interfaces | | | 3.8.1 | Low Pin Count (LPC) FMC, J1 | | | 3.8.2 | Configuration FMC, J2
High Pin Count FMC+. J3 | | | 3.8.4 | FMC VADJ Power Supplies | | | 3.0.4 | FING VALU POWEr Supplies | 20 | | Annendiy A | A Rev1 PCB Top View | 21 | | | | | | | Line CT III | | | | List of Tables | | | | | | | Table 1 | References | 2 | | Table 2 | Switch Definitions | | | Table 3 | Status LED Definitions | | | Table 3 | User LED FPGA pin locations | | | Table 5 | DDR REFCLK Connections | | | 10000 | DIT TEL DET COMMONOMO | 10 | | | | | | | | | | Table 6 | PROGCLK0 Connections | 10 | |----------|----------------------------------|----| | Table 7 | PROGCLK1 Connections | 10 | | Table 8 | CLK_M2C Connections | 11 | | Table 9 | GCLK_M2C Connections | 11 | | Table 10 | Voltage and Temperature Monitors | 14 | | Table 11 | Temperature Limits | 15 | | Table 12 | Status LED Definitions | 15 | | Table 13 | Target FPGA IO Banks | 16 | | Table 14 | Target MGT Links | | | Table 15 | LPC FMC Groups (J1) | 19 | | Table 16 | Config FMC Groups (J2) | 19 | | Table 47 | FMC: C (12) | | # List of Figures | Figure 2 | ADM-SDEV-BASE/XCKU060 Block Diagram | | |-----------|---|-----| | Figure 3 | Status LED Locations | | | Figure 4 | User LED Locations | | | Figure 5 | JTAG Boundary Scan Chain | | | Figure 6 | Clocks | | | Figure 7 | Flash Address Map | . 1 | | Figure 8 | MGT Links | . 1 | | Figure 9 | DRAM Banks | . 1 | | Figure 10 | ADM-SDEV-BASE/XCKU060 Top View (rev1 hoard shown) | 2 | ADM-SDEV-BASE/XCKU060 Top View (rev2 board shown) # 1 Introduction The ADM-SDEV-BASE/XCKU060 is the base board at the core of the ADA-SDEV-KIT and ADA-SDEV-KIT2 space FPGA development kits. These kits enable customers interested in space grade FPGAs to prototype their applications on a compatible XCKU060-11 device. The ADA-SDEV-KIT2 contains an ADM-SDEV-BASE/XCKU060 rev 2 board, while the ADA-SDEV-KIT contains an ADM-SDEV-BASE/XCKU060 rev 1 board. # The differences between revisons are as follows: - The FPGA core power supply on the rev 2 board was uprated to 36A, on the rev 1 board this supply is rated at 24A. - The rev 2 revision board has user controlled LEDs, a feature not present on the rev 1 board. # Note: Other than the differences listed above, rev 1 and rev 2 revision boards are functionally identical. Unless stated otherwise all sections of this user manual apply equally to both revisions. Figure 1 : ADM-SDEV-BASE/XCKU060 Top View (rev2 board shown) # 1.1 Key Features ### Key Features - Custom Form Factor - Modular design structure - Powered via an external power supply - Fitted with XCKU060-1FFVA1517I FPGA device as standard - PCB footprint compatible with QRKU060-CNA1509 (Contact factory for details) - 1x FMC+ HPC and 1x FMC LPC interfaces - 1x FMC form factor configuration interface clearly labelled "XRTC-Standard Config-FMC Only" - DDR3 (with ECC) SODIMM connector to banks 66,67,68 for DDR3 support - A JTAG header to allow Vivado Hardware Manager configuration and debug (requires ADM-SDEV-CFG1 or ADM-SDEV-CFG2 board) - Programmable clock generation, controlled by I2C connected to the FMC config daughter base board and the FRCA - Heatsink and Fan on top of KU060 FPGA # 1.2 References & Specifications | ANSI/VITA 57.1 | FPGA Mezzanine Card (FMC) Standard, July 2008, VITA, ISBN 1-885731-49-3 | |----------------|---| | ANSI/VITA 57.4 | FPGA Mezzanine Card Plus(FMC+) Standard, March 2016, VITA, Draft | | ad-ug-0080 | ADA-SDEV-KIT Configuration Guide, Nov 2018, Alpha-Data, v1.0 | | ad-ug-0081 | ADA-SDEV-KIT production Test Overview, Sep 2019, Alpha-Data, v1.2 | | ad-ug-1361 | ADA-SDEV-CFG1 User Manual, Nov 2018, Alpha-Data, v1.0 | | ad-ug-1423 | ADA-SDEV-CFG2 User Manual, Apr 2021, Alpha-Data, v1.0 | Table 1 · References # 1.3 Environmental & Specifications The operational temperature range of the ADA-SDEV-BASE board is outlined in Temperature Limits. #### Note: Note: The ADA-SDEV-KIT and ADA-SDEV-KIT2 are designed for use as development platforms only, are not space graded platforms and are not suitable for flight or radiation testing. # 2 Installation ### 2.1 Software Installation Please refer to the Alpha-Data support site for access to system monitoring utilities, documentation and FPGA reference designs. # 2.2 Hardware Installation ### 2.2.1 Handling Instructions The components on this board can be damaged by electrostatic discharge (ESD). To prevent damage, observe ESD precautions: - Always wear a wrist-strap when handling the card - Hold the board by the edges - Avoid touching any components Store in ESD safe bag. ### 2.2.2 Power Supply The base board is designed to be powered via an external ATX power supply, connected via the standard 24-pin ATX12V 2.x power connector J5. This external ATX power supply must be capable of providing a minimum of 20A (100W) on the +5V rail. In its default configuration the ADA-SDEV-BASE board draws all of its power from the +5V rail. Some ATX power supplies may not turn on without a minimum load on the +3.3V rail. Please contact the factory for further details. A list of power supplies that have been verified to work with the ADA-SDEV-KIT shall be maintained in document ad-ur-0081. ### 2.2.3 Cooling Requirements The power dissipation of the board is highly dependent on the Target FPGA application. A power estimator spreadsheet is available on request from Alpha Data. This should be used in conjunction with Xilinx power estimation tools to determine the exact current requirements for each power rail. The board is supplied with an active air cooled heatsink. The board features system monitoring that measures the board and FPGA temperature. It also includes a self-protection mechanism that will clear the target FPGA configuration if an over-temperature condition is detected. See Section 3.5 for further details. ### 2.2.4 Configuration FMC Board Prior to applying power the configuration FMC board (ADM-SDEV-CFG1, ADM-SDEV-CFG2 or similar) should be fitted into the Config FMC Socket (J2). # 3 Functional Description # 3.1 Overview Figure 2 : ADM-SDEV-BASE/XCKU060 Block Diagram # 3.1.1 Switch Definitions There is a sliding switch situated on the bottom right corner of the board, plus a set of eight DIP switches and a push button switch placed on the top right corner of the board. Their functions are described in Switch Definitions. #### Delilillion ### Note: All switches are OFF by default. Factory Configuration switch must be in the OFF position for normal operation. | Switch Ref. | Function | ON State | Off State | |----------------------|-------------------------------|--|----------------------| | SW1 (push
button) | Reset | System Reset | Normal Operation | | SW2-1 | Reserved | - | Normal Operation | | SW2-2 | Reserved | - | Normal Operation | | SW2-3 | Config Disable | Configuration of the FPGA is disabled. | Normal Operation. | | SW2-4 | FPGA User 1 -
FPGA Bank 64 | User defined | User defined. | | SW2-5 | FPGA User 2 -
FPGA Bank 24 | User defined | User defined. | | SW2-6 | Reserved | - | Normal Operation | | SW2-7 | Factory
Configuration | - | Normal Operation | | SW2-8 | Reserved | - | Normal Operation | | SW3 (sliding) | POWER ON/
OFF | PSU ON (position A) | PSU OFF (position B) | Table 2 : Switch Definitions ### 3.1.2 Status LED Definitions The position and description of the board status LEDs are shown in Status LED Locations: Figure 3 : Status LED Locations | Comp. Ref. | Function | ON State | Off State | |------------|----------------------------|-----------------------------|----------------------| | D1(Green) | Status 0 | See Status LED Definitions | | | D2(Red) | Status 1 | See Status LED Definitions | | | D3(Red) | Internal Power
Fault | Internal Power supply fault | Normal operation | | D4(Green) | FPGA Done | FPGA is configured | FPGA is unconfigured | | D5(Red) | Reserved for
future use | - | - | | D6(Green) | Reserved for
future use | - | - | | D7(Green) | ATX PSU
Status | Normal operation | ATX PSU Off | Table 3 : Status LED Definitions # 3.1.3 User LEDs - ADA-SDEV-KIT2 only There are six user defined LEDs available on the board ,their positions are shown in User LED Locations: Figure 4 : User LED Locations | Comp. Ref. | Pin Loc | |------------|---------| | D10(Green) | AH31 | | D11(Green) | AH32 | | D12(Green) | AE30 | | D13(Green) | AF30 | | D14(Green) | AH28 | | D15(Green) | AJ28 | Table 4 : User LED FPGA pin locations # Note: User LEDs are only present on ADA-SDEV-KIT2 kits, i.e. base board pcb revision 2 onwards. No user LEDs are available on ADA-SDEV-KIT. ### 3.2 JTAG Interface ### 3.2.1 On-board Interface A JTAG boundary scan chain can be accessed via a standard connector on the config FMC (J2). This allows the connection of the Xilinx JTAG cable for FPGA debug using the Xilinx toolchain. The JTAG chain starts on the config FMC board and passes through the FPGA, the LPC FMC (J1) (if fitted) and the FMC+ (J3) (if fitted). The scan chain is shown in JTAG Boundary Scan Chain: Figure 5 : JTAG Boundary Scan Chain At each stage the clock signal on this JTAG interface (TCK) has a parallel termination ($49.9\Omega + 22pF$ to ground) located at the far end of the line. #### 3.2.2 JTAG Voltages The Vcc supply provided to the JTAG cable on the config FMC is +3.3V and is protected by a poly fuse rated at 375mA. The JTAG signals on all of the FMC boards use 3.3V signals and are connected through level translators to the ADM-SDEV-BASE board scan chain. The voltage level of the JTAG chain on the ADM-SDEV-BASE board is set to the config FMC adjustable voltage FMC2_VIO. # 3.3 Clocks The ADA-SDEV-BASE board provides a wide variety of clocking options. In addition to the and clocks routed from the FMC connectors, the board has 2 user-programmable clock generators. These clocks can be combined with the FPGA's internal PLLs to suit a wide variety of communication protocols. A complete overview of the clock routing on the ADA-SDEV-BASE is given in Clocks. A description of each clock follows Figure 6 : Clocks ### 3.3.1 Reference Clocks (REFCLK400M and FABRIC_CLK) The fixed reference clocks REFCLK400M and FABRIC_CLK are differential HSTL signals. REFCLK400M is used as the input clock for the DDR SDRAM interface. FABRIC_CLK is used as the reference clock for the IO delay control block (IDELAYCTRL). | Signal | Frequency | Target FPGA Input | IO Standard | "P" pin | "N" pin | |------------|-----------|-------------------|-------------|---------|---------| | REFCLK400M | 400 MHz | IO BANK 67 | HSTL | H18 | H17 | | FABRIC_CLK | 200 MHz | IO BANK 67 | HSTL | H19 | G19 | ### Table 5 : DDR REFCLK Connections # 3.3.2 Programmable Clocks (PROGCLK0 and PROGCLK1) There are two programable clock sources that are forwarded throughout the FPGA. These clocks are programmable through the Alpha Data ADA-SDEV-BASE SDK. PROGCLK0 and PROGCLK1 are generated by a dedicated programmable clock generator IC and offer extremely high frequency resolutions (fipm increments). | Signal | Frequency | Target FPGA Input | IO Standard | "P" pin | "N" pin | |-------------|-------------|-------------------|-------------|---------|---------| | PROGCLK0[0] | 5 - 400 MHz | IO BANK 45 | LVDS | AL27 | AL28 | | PROGCLK0[1] | 5 - 400 MHz | MGTREFCLK1_224 | LVDS | AP10 | AP9 | | PROGCLK0[2] | 5 - 400 MHz | MGTREFCLK1_127 | LVDS | V32 | V33 | | PROGCLK0[3] | 5 - 400 MHz | IO BANK25 | LVDS | AN36 | AN37 | Table 6 : PROGCLK0 Connections Note: PROGCLK0[3:0] are all buffered copies of the same clock signal. The default (factory set) frequency of PROGCLK0 = 400MHz. | Signal | Frequency | Target FPGA Input | IO Standard | "P" pin | "N" pin | |-------------|-------------|-------------------|-------------|---------|---------| | PROGCLK1[0] | 5 - 400 MHz | MGTREFCLK1_225 | LVDS | AK10 | AK9 | | PROGCLK1[1] | 5 - 400 MHz | IO BANK 64 | LVDS | AP19 | AP18 | | PROGCLK1[2] | 5 - 400 MHz | IO BANK 48 | LVDS | J26 | H26 | | PROGCLK1[3] | 5 - 400 MHz | MGTREFCLK1_226 | LVDS | AC8 | AC7 | #### Table 7 : PROGCLK1 Connections Note: PROGCLK1[3:0] are all buffered copies of the same clock signal. The default (factory set) frequency of PROGCLK1 = 150MHz. ### 3.3.3 Module to Carrier Global Clocks (CLK M2C) Each connected FMC board can generate a number of differential Global clocks (as per the FMC standard). They each connect to an global clock input on the FPGA. | FMC | Signal | Frequency | FPGA Input | IO Standard | "P" pin | "N" pin | |-----|------------|-----------|------------|-------------|---------|---------| | 1 | CLK1_M2C_0 | Variable | Bank 44 | LVDS | AM22 | AN22 | | 1 | CLK1_M2C_1 | Variable | Bank 44 | LVDS | AM21 | AN21 | | 2 | CLK2_M2C_0 | Variable | Bank 24 | LVDS | AM32 | AN32 | | 2 | CLK2_M2C_1 | Variable | Bank 24 | LVDS | AM31 | AN31 | | 2 | CLK2_M2C_2 | Variable | Bank 64 | LVDS | AL19 | AL18 | | 2 | CLK2_M2C_3 | Variable | Bank 64 | LVDS | AL17 | AM17 | | 3 | CLK3_M2C_0 | Variable | Bank 46 | LVDS | H36 | G36 | | 3 | CLK3_M2C_1 | Variable | Bank 46 | LVDS | G37 | F37 | | 3 | CLK3_M2C_2 | Variable | Bank 47 | LVDS | F32 | E32 | | 3 | CLK3_M2C_3 | Variable | Bank 47 | LVDS | F33 | E33 | Table 8 : CLK_M2C Connections # 3.3.4 Module to Carrier MGTREF Clocks (GBTCLK_M2C) Each connected FMC board can generate a number of differential MGT Reference clocks (as per the FMC standard). They each connect to an MGTREFCLK input on the FPGA. | _ | | | | | | | |-----|---------------|-----------|---------------|-------------|---------|---------| | FMC | Signal | Frequency | FPGA Input | IO Standard | "P" pin | "N" pin | | 1 | GBTCLK1_0_M2C | Variable | MGTREFCLK_225 | LVDS | AM10 | AM9 | | 2 | GBTCLK2_0_M2C | Variable | MGTREFCLK_224 | LVDS | AT10 | AT9 | | 3 | GBTCLK3_0_M2C | Variable | MGTREFCLK_226 | LVDS | AH10 | AH9 | | 3 | GBTCLK3_1_M2C | Variable | MGTREFCLK_227 | LVDS | AE8 | AE7 | | 3 | GBTCLK3_2_M2C | Variable | MGTREFCLK_228 | LVDS | AA8 | AA7 | | 3 | GBTCLK3_3_M2C | Variable | MGTREFCLK_126 | LVDS | AD32 | AD33 | | 3 | GBTCLK3_4_M2C | Variable | MGTREFCLK_127 | LVDS | Y32 | Y33 | | 3 | GBTCLK3_5_M2C | Variable | MGTREFCLK_128 | LVDS | T32 | T33 | Table 9 : GCLK_M2C Connections # 3.4 Configuration There are two main ways of configuring the FPGA on the ADM-SDEV-BASE: - From Flash memory on the config FMC board, at power-on, as described in Section 3.4.1 - Using a Xilinx Platform JTAG cable connected to the programming header on the config FMC board Section 3.4.2 ### 3.4.1 Configuration From ADM-SDEV-CFG1 or ADM-SDEV-CFG2 Flash Memory The FPGA can be automatically configured at power-on from two 256 Mbit GSPI flash memory device configured as an x8 SPI device (Microp part numbers MTS20US65ABAER12-1817). These flash devices are bytically divided into two regions of 32 MByte each, where each region is sufficiently large to hold an uncompressed bitstream for the FPGA. It is possible to use Multiboot with a fallback image on this hardware. The master SPI configuration interface and the Fallback MultiBoot are discussed in detail in Xilinx UG570. The flash address map is as detailed below: Figure 7: Flash Address Map At power-on, the FPGA attempts to configure itself automatically in serial master mode based on the contents of the header in the programing file. See Xilinx UG570 MultiBoot for details. #### Note: If an over-temperature alert is detected from the System Monitor, the FPGA will be cleared by pulsing its PROG signal. See Automatic Temperature Monitoring. # 3.4.1.1 Building and Programming Configuration Images Generate a bitfile with these constraints (see xapp1233): - set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design] - set_property BITSTREAM.CONFIG.EXTMASTERCCLK_EN {DIV-1} [current_design] - set_property BITSTREAM.CONFIG.EXTMASTERCECE_EXTENSION_(current_design) - set_property BITSTREAM.CONFIG.SPI_BUSWIDTH 8 [current_design] - set_property BITSTREAM.CONFIG.SPI_FALL_EDGE YES [current_design] - set_property BITSTREAM.CONFIG.UNUSEDPIN {Pullnone} [current_design] - set_property CFGBVS GND [current_design] - set_property CONFIG_VOLTAGE 1.8 [current_design] - set_property BITSTREAM.CONFIG.OVERTEMPSHUTDOWN Enable [current_design] Generate an MCS file with these properties (write_cfgmem): - -format MCS - -size 64 - -interface SPIv8 - -loadbit "up 0x0000000 <directory/to/file/filename.bit>" (0th location) - -loadbit "up 0x2000000 <directory/to/file/filename.bit>" (1st location, optional) Program with vivado hardware manager with these settings (see xapp1233): - SPI part: mt25qu256-spi-x1_x2_x4_x8 - State of non-config mem I/O pins: Pull-none Target the four files generated from the write of green tol command. # 3.4.2 Configuration via JTAG A Xilinx Platform Programming Cable may be attached to the programming header on the Config FMC board. This permits the FFGA to be reconfigured using the Xilinx Vivado Hardware Manager via JTAG. The device will be automatically recognized in Vivado Hardware Manager. For more detailed instructions, please see "Programming the FPGA Device" section of Xilinx UG908: https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug908-vivado-programming-debugging.pdf # 3.5 Health Monitoring The ADA-SDEV-BASE has the ability to monitor temperature and voltage to maintain a check on the operation of the board. The monitoring is implemented using the Atmel AVR microcontroller. Control algorithms within the microcontroller automatically checks line voltages and on board temperatures. The following voltage rails and temperatures are monitored: | Monitor | Name | Purpose | Units | |---------------|-------|---|-------| | 12.0V | ADC00 | Board Input Supply | V | | 5.0V | ADC01 | Board Input Supply | V | | 3.3V | ADC02 | Board Input Supply | V | | FMC2_VIO | ADC03 | Config FMC I/O voltage | V | | 2.5V | ADC04 | Level Translation | V | | 1.8V | ADC05 | FPGA IO Voltage (VCCO) | V | | 0.95V | ADC06 | Target FPGA Core Supply (VccINT) | V | | 1.8V | ADC07 | Target Transceiver Power (AVCC_AUX) | V | | 1.5V | ADC08 | DDR SDRAM, Target FPGA memory I/O | V | | 1.2V | ADC09 | Target Transceiver Power (AVTT) | V | | 1.0V | ADC10 | Target Transceiver Power (AVCC) | V | | 12.0V Current | ADC11 | 12V Supply Current Reading | A | | 5.0V Current | ADC12 | 5V Supply Current Reading | A | | 3.3V Current | ADC13 | 3.3V Supply Current Reading | A | | Temp1 | TMP00 | micrcontroller on-die temperature | | | Temp2 | TMP01 | Board temperature sensor on-die temperature | deg C | | Temp3 | TMP02 | FPGA on-die temperature | | Table 10: Voltage and Temperature Monitors Note: The "Name" column contains the name assigned to each sensor in the display-sensors utility report. ### 3.5.1 Automatic Temperature Monitoring At power-up, the control logic sets the temperature limits and resets the temperature sensor's over-temperature interrupt. The temperature limits are shown below: | | FPGA | | Board | | |------------|----------|-----------|----------|-----------| | | Min | Max | Min | Max | | Industrial | -40 degC | +100 degC | -40 degC | +100 degC | Table 11 : Temperature Limits # Important: If any temperature limit is exceeded, the FPGA is automatically cleared. This is indicated by the Green LED (FPGA Configured) switching off and the two status LEDs showing a temperature fault indication. The purpose of this mechanism is to protect the card from damage due to over-temperature. #### 3.5.2 Microcontroller Status I FDs LEDs D2 (Red) and D1 (Green) indicate the microcontroller status. | LEDs | Status | |--|---| | Green | Running and no alarms | | Green + Red | Standby (Powered off) | | Flashing Green + Flashing Red
(together) | Attention - critical alarm active | | Flashing Green + Flashing Red
(alternating) | Service Mode | | Flashing Green + Red | Attention - alarm active | | Red | Missing application firmware or
invalid firmware | | Flashing Red | FPGA configuration cleared to
protect board | Table 12 : Status LED Definitions ### 3.6 FPGA ### 3.6.1 I/O Bank Voltages The FPGA IO is arranged in banks, each with their own supply pins. The bank numbers, their voltage and function are shown in Target FPGA IO Banks. Full details of the IOSTANDARD required for each signal are given in the ADA-SDEV-BASE SDK. | IO Banks | Voltage | Purpose | |------------|------------|---------------------| | 0, 65 | FMC2_VIO_B | Configuration, JTAG | | 44, 45 | FMC1_VADJ | LPC FMC GPIO | | 24, 64 | FMC2_VADJ | Config FMC GPIO | | 25, 46, 47 | FMC3_VADJ | FMC+ GPIO | | 48 | FMC3_VIO_B | FMC+ GPIO | | 66, 67, 68 | 1.5V | DDR SODIMM | Table 13: Target FPGA IO Banks ### 3.6.2 Target MGT Links There are a total of 32 Multi-Gigabit Transceiver (MGT) links connected to the FPGA: | Links | Width | Connection | |---------------|-------|---------------------------------| | FMC1_DP(3:0) | 4 | links to LPC FMC Socket (J1) | | FMC2_DP(3:0) | 4 | links to Config FMC Socket (J2) | | FMC3_DP(23:0) | 24 | links to FMC+ Socket (J3) | ### Table 14 : Target MGT Links Note: link FMC2 DP(1) is unavailable on the CNA1509 package device. The connections of these links are shown in MGT Links: For MGT Clocking see Clocks: Figure 8 : MGT Links # 3.7 Memory Interfaces The ADA-SDEV-BASE has a single SODIMM socket, capable of supporting a DDR3 (with ECC) SODIMM module, spread across 3 FPGA IO banks (66/67/68). The memory banks are arranged for compatibility with the Xilinx Memory Interface Generator (MIG). DRAM Banks Shows the FPGA banks used. Full details of the interface, signaling standards and an example design are provided in the ADA-SDEV-BASE SDK. Figure 9 : DRAM Banks # 3.8 FMC Interfaces The ADA-SDEV-BASE board has 3 FMC sockets, J1, J2 and J3. Their interfaces are described below. ### 3.8.1 Low Pin Count (LPC) FMC, J1 Connector J1 is for general purpose IO. | Group | FPGA
Bank | Name | Function | |-----------|--------------|---|--| | FMC1_LA_0 | 44 | FMC1_LA(16:2) | 15 diff. Pairs / 30 single-ended | | | | FMC1_LA_CC (1:0) | 2x Regional Clocks / GPIO pairs / 4 single-ended | | FMC1_LA_1 | 45 | FMC1_LA(33:19) | 15 diff. Pairs / 30 single-ended | | | | FMC1_LA_CC (18:17) | 2x Regional Clocks / GPIO pairs / 4 single-ended | | | FMC1_LA_0 | ### Bank ################################### | FMC1_LA_0 | ### Table 15 : LPC FMC Groups (J1) # 3.8.2 Configuration FMC, J2 Connector J2 is used for the FPGA configuration interface plus also for general purpose IO. | Group | FPGA
Bank | Name | Function | |-----------|--------------|--------------------|--| | CONFIG | 0,65 | Various | FPGA Configuration Interface | | FMC2_LA_0 | 24 | FMC2_LA(16:2) | 15 diff. Pairs / 30 single-ended | | | 24 | FMC2_LA_CC (1:0) | 2x Regional Clocks / GPIO pairs / 4 single-ended | | FMC2_LA_1 | 64 | FMC2_LA(33:19) | 15 diff. Pairs / 30 single-ended | | | | FMC2_LA_CC (18:17) | 2x Regional Clocks / GPIO pairs / 4 single-ended | Table 16: Config FMC Groups (J2) # 3.8.3 High Pin Count FMC+, J3 Connector J3 is used for general purpose IO. | Group | FPGA
Bank | Name | Function | |-------------|--------------|--------------------|--| | FMC3 LA 0 | | FMC3_LA(16:2) | 15 diff. Pairs / 30 single-ended | | FMC3_LA_U | 46 | FMC3_LA_CC (1:0) | 2x Regional Clocks / GPIO pairs / 4 single-ended | | FMC3 LA 1 | 47 | FMC3_LA(33:19) | 15 diff. Pairs / 30 single-ended | | FIVICS_LA_1 | | FMC3_LA_CC (18:17) | 2x Regional Clocks / GPIO pairs / 4 single-ended | | | 25,46 | FMC3_HA(16:2) | 15 diff. Pairs / 30 single-ended | | FMC3 HA 0 | | FMC3_HA_CC (1:0) | 2x Regional Clocks / GPIO pairs / 4 single-ended | | FMC3_HA_U | | FMC3_HA(23:18) | 6 diff. Pairs / 12 single-ended | | | | FMC3_HA_CC (17) | Regional Clock / GPIO pair / 2 single-ended | | FMC3_HB_0 | 48 | FMC3_HB(5:1) | 5 diff. Pairs / 10 single-ended | Table 17: FMC+ Groups (J3) (continued on next page) | Group | FPGA
Bank | Name | Function | |-----------|--------------|-----------------|---| | FMC3_HB_0 | 48 | FMC3_HB(16:7) | 10 diff. Pairs / 20 single-ended | | | | FMC3_HB(21:18) | 4 diff. Pairs / 8 single-ended | | | | FMC3_HB_CC (0) | Regional Clock / GPIO pair / 2 single-ended | | | | FMC3_HB_CC (6) | Regional Clock / GPIO pair / 2 single-ended | | | | FMC3_HB_CC (17) | Regional Clock / GPIO pair / 2 single-ended | Table 17 : FMC+ Groups (J3) ### 3.8.4 FMC VADJ Power Supplies The ADM-SDEV-BASE/XCKU060 board is fully compliant with the VITA 57.1 standard. This means that any FMC card that is used with the board should have an EEPROM on board programmed according to the IPMI format defined in the VITA 57.1 FMC specification. The IPMI specification notes that an FMC board should use a 2K EEPROM which is compatible with 24C02 devices. This EEPROM must be available to be queried at power on in order that the FMC slot VADJ voltage can then be set up and turned on. If this specification is not followed, the VADJ voltage to the FMC slot in question will not automatically power up (it will correctly remain at 0V). ### Note: In the event that this EEPROM is not present on the FMC board, an alternative method of configuring the FMC VADJ power supply is also possible. The use of this alternative method is not recommended practice. Please contact Alpha Data support for further details if required. # Appendix A: Rev1 PCB Top View Figure 10 : ADM-SDEV-BASE/XCKU060 Top View (rev1 board shown) # **Revision History** | Date | Revision | Nature of Change | |-------------|----------|--| | 12 Sep 2018 | 0.1 | Initial Draft | | 21 Sep 2018 | 0.2 | Updated after review | | 27 Nov 2018 | 1.0 | First Release | | 28 Aug 2019 | 1.1 | Updated sensor table to include sensor name | | 23 Sep 2019 | 1.2 | Updated references table and section on ATX power supply | | 11 Oct 2019 | 1.3 | Corrected error in release date of previous version | | 29 Feb 2020 | 1.4 | Added mention of new user LEDs on Rev 2 pcb | | 18 May 2020 | 1.5 | Added definition of differences between rev1 and rev2 pcbs | | 19 May 2020 | 1.6 | Added section regarding turn on of FMC ADJ power supplies. | | 27 Apr 2021 | 1.7 | Amended any references to CFG1 board to include CFG2. | Address: Suite L4A, 160 Dundee Street, Edinburgh, EH11 1DQ, UK Telephone: +44 131 558 2600 Fax: +44 131 558 2700 email: sales@alpha-data.com website: http://www.alpha-data.com Address: 611 Corporate Circle, Suite H Golden, CO 80401 Telephone: (303) 954 8768 Fax: (866) 820 9956 - toll free email: sales @ alpha-data.com website: http://www.alpha-data.com